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Abstract—The widespread use of software metrics to predict various 
quality attributes is evident. In this study we have used metrics to 
identify change prone parts of software so that developers can pay 
focused attention on such classes. Various metric models are 
constructed using machine learning and statistical techniques, which 
can be used for predicting change prone parts of the software. 
However, training these models is a time consuming task and hence, 
these models cannot be used on a daily basis to predict change 
proneness. In this paper, an alternative approach is used which is 
based on calculating thresholds of metrics. Thresholds are defined as 
alarming values above which a class is considered to be risky or 
change prone and hence, needs careful attention. A statistical 
approach is used to calculate threshold values of open source 
software, Freemind 0.9.0. To examine the applicability of threshold 
values, they are validated on the different releases of Freemind as 
well as on a similar nature project, Frinika. The results demonstrate 
the effectiveness of the methodology in identification of the threshold 
values. 
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1. INTRODUCTION 

Object oriented (OO) metrics are widely used in literature to 
predict various software quality attributes. In this study, we 
use OO metrics to predict the parts of software that are more 
change prone than others. Identification of change prone parts 
in early phases of software development life cycle helps 
managers is efficiently allocating the resources (time, money 
and manpower). It also helps designers to get an insight on the 
design of software and thus, can alter the design if it is 
required. Construction of the metric models using various 
machine learning and statistical techniques to identify change 
prone parts is well known in literature ([1]-[7]). However, 
construction of these metric models is not always feasible. 
Training these models using machine learning techniques is a 
time consuming task and thus, it is impractical to use them on 
a daily basis. An alternative is to identify certain alarming 
values of the metrics above which a class is considered to be 
risky. In other words, we can define some thresholds for the 
metrics. The class having metric value more than the threshold 
value needs careful and focused attention. According to 
Chidamber et al. [8] one of the important uses of OO metrics 

is to identify extreme values (threshold values) of these 
metrics. The classes above these extreme values will have 
higher complexity and require management attention. In this 
study, we have obtained threshold values for various OO 
metrics using a statistical approach proposed by Bender [9]. 
This methodology of threshold computation is much simpler 
as it is just based on the values of constant and coefficient of 
each metric obtained from univariate logistic regression. It 
requires much less time and effort than the traditional metric 
models.  

In initial years, many authors have derived threshold values 
based on their experience and thus, those values are not 
universally accepted. For example, McCabe [10] defined a 
value of 10 as threshold for the complexity metric; the 
threshold values of maintainability index metric are defined as 
65 and 85 [11] etc. Besides the thresholds based on intuition, 
some researchers defined thresholds using mean (µ) and 
standard deviation (σ) measures. For example, Erni et al. [12] 
calculated the threshold values using µ and σ of the metric 
values. The paper defined two terms Tmin = m - s and Tmax = 
m + s, the lower and the higher thresholds. However, this 
method did not become popular as it was based on the 
assumption that the metrics are normally distributed which is 
not always possible. French [13] used Chebyshev’s inequality 
theorem (not restricted to normal distribution) in addition to 
mean (µ) and standard deviation (σ) to derive threshold 
values. According to French, a threshold can be defined as T= 
µ + k * σ (k=number of standard deviations). However, this 
methodology was also not used much as it was restricted to 
only two-tailed symmetric distributions, which are not 
justified. There are few studies in literature, which have 
obtained the threshold values of metrics to predict fault 
proneness ([14]-[20]). Benlarbi et al. [21] and El Emam et al. 
[19] used a statistical model (based on logistic regression) 
suggested by Ulm [22] to calculate the threshold values of 
number of metrics and found that there was no statistical 
difference between the model predicted with threshold values 
and model predicted without threshold values. Bender [9] 
working in the epidemiological field proposed another 
statistical model that was used by Shatnawi [20] to find the 
risk level for any arbitrary threshold value for Chidamber and 
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Kemerer (CK) metrics. Their results concluded that the CK 
metrics have threshold effects at various risk levels.  

Thus, the literature shows that although there are few studies 
that use threshold methodology for predicting fault proneness, 
but no study till date known to the authors has obtained 
thresholds for OO metrics on change proneness. More studies 
need be conducted to identify potential usage of threshold 
values for predicting change proneness. Additionally, research 
is required to understand if these values can be generalised 
across various software applications. 

Hence, the main aim of this paper is to calculate the threshold 
values of metrics and compare its results of validation with the 
results of the validation when metric models are used. We 
focus on the following four key points: 

1. Applying threshold methodology to compute thresholds: 
We have used a statistical approach proposed by Bender 
et al. [9] to calculate the threshold values of the metrics of 
an open source software, Freemind (a mind mapper and 
hierarchical editor). 

2. Validating the threshold methodology to assess its 
accuracy: Once the threshold values are computed, we 
constructed various machine learning models (adaboost 
(AB), bagging, logitboost (LB), multilayer perceptron 
(MLP), naïve bayes (NB), random forest (RF) and 
classification & regression trees (CRT)) to validate the 
values. We have also constructed the same models 
without using the thresholds of the metrics and compared 
the results. 

3. Conducting inter-release validation: We computed the 
threshold values for Freemind 0.9.0 and validated them on 
different releases of Freemind, 0.9.1 and 0.10.0. This will 
allow us to assess the applicability of the threshold values 
on various versions of the same software. 

4. Conducting inter-project validation: In addition to 
validating the different release of same software, we also 
validated the threshold values on similar nature software, 
Frinika 0.2.0. This will allow us to externally validate the 
applicability of the identified threshold values. This will 
help in obtaining generalized and well-formed results. 
 

We have used area under the receiver operating characteristic 
curve (AUC) and g-mean to analyse the results as these are 
suitable for unbalanced data. The results indicate that there 
exist thresholds for OO metrics and these thresholds can be 
applied by software engineers on similar nature software 
systems to find the change prone design and code areas that 
may require corrective action.  

The paper is organized as follows: Next section, explains the 
basic background behind the work, emphasizing on the 
variables used and empirical data collection. Following this, in 
section 3, we present the research methodology that focuses 
on the basic approach or steps followed to carry out the work. 
It explains the univariate and the threshold results. Section 4 
explains in detail the validation results of the study along with 

the results of external validation. Finally, the work is 
concluded in section 5. 

2. RESEARCH BACKGROUND 

In this section, we summarize the independent and dependent 
variables used in our study. We also explain the datasets used 
along with their descriptive statistics. The statistical method 
used and the formula for calculating threshold values have 
also been explained. 

2.1 Dependent and Independent Variables 

The dependent variable used in our study is change proneness. 
Change proneness can be defined as the probability of 
occurrence of change in a class. Change is calculated in terms 
of the number of lines of code added, deleted and modified in 
the recent version with respect to the previous version. The 
independent variables are a set of object oriented metrics listed 
below: 

a. Coupling between object classes (CBO): Number of 
classes whose attributes is used by the given class plus 
those that use the attributes or methods of the given class 

b. Number of Children (NOC): Number of direct children of 
a class in a hierarchy 

c. Number of Attributes (NOA): Number of 
attributes/variables defined in a class 

d. Number of Instance Variable (NIV): It measures relations 
of a class with other objects of the program 

e. Depth of Inheritance Tree (DIT): Maximum number of 
steps from the class node to the root of the tree  

f. Number of Methods per Class (NOM): Number of 
methods defined in the class 

g. Number of Instance Method (NIM): Number of Instance 
Methods 

h. Number of Local Methods (NLM): Number of local (not 
inherited) methods  

i. Response For a Class (RFC): Number of methods in the 
class including the methods that are called by class’s 
methods 

j. Number of Local Default Visibility Methods (NLDM): 
Number of local default visibility methods  

k. Number of Private Methods (NPRM): Number of local 
(not inherited) private methods 

l. Number of Protected Methods (NPROM): Number of 
local protected methods 

m. Number of Public Methods (NPM): Number of local (not 
inherited) public methods 

n. Lack of Cohesion amongst methods (LCOM): For each 
data field in a class, the percentage of the methods in the 
class using that data field; the percentages are averaged 
and then subtracted from 100% 
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o. Weighted Methods Per Class (WMC): Count of sum of 
complexities of all methods in a class 

p. Lines of Code (LOC): Number of lines that contain 
source code 

2.2 Empirical Data Collection 

The empirical validation is carried on an open source dataset, 
Freemind written in Java programming language. We analysed 
3 releases of Freemind, 0.9.0, 0.9.1, 0.10.0. For external 
validation, another open source dataset is considered, Frinika 
written in Java programming language. The source code of 
these open source software is available at 
http://sourceforge.net. Freemind is a mind mapper and 
hierarchical editor. It serves various purposes to its users, 
including keeping track of projects, acts as workplace 
for Internet research, used for essay 
writing and brainstorming, etc. Frinika is a complete music 
workstation, which provides the end user with a complete 
platform for creating music with their computers. The details 
of software are provided in table 1. Change is collected for the 
common classes between 2 successive releases of each 
software. For example, change is collected in terms of number 
of lines added, deleted and modified in Freemind 0.9.0 with 
respect to Freemind 0.9.1. The common classes between 
Freemind 0.9.0 and 0.9.1 were found to be 656. Thus, we say 
that there are 656 datapoints for Freemind 0.9.0 where each 
datapoint corresponds to one Java class common in both the 
versions 0.9.0 and 0.9.1. For each data point, we collected: a) 
set of OO metrics for that class in first version, i.e. 0.9.0 in 
this case and b) the number of SLOC changes in that class 
from version 0.9.0 to 0.9.1. We carried out three analyses 
using the datasets as explained below (see Fig. 1): 

1. We computed the threshold values of object oriented 
metrics on Freemind 0.9.0.  

2. We validated the threshold values of the object oriented 
metrics on successive versions of Freemind (0.9.1, 1.0.0). 

3. We validated the threshold values of the object oriented 
metrics obtained from Freemind 0.9.0 on Frinika 0.2.0. 
The external validation of Freemind is done on Frinika as 
they possess some common characteristics such as both 
are open source, free, written in java and licensed under 
GNU GPL. The purpose of this analysis was to compute 
the threshold values for the metrics and assess the 
applicability of the obtained threshold values on different 
datasets (including versions of the same software and 
different software). 

Table 1: Details of Software 

Software/version Release 
year 

KLOC Total 
classes 

Classes 
changed 

Freemind 0.9.0 2008 48 656 29 
Freemind 0.9.1 2009 50 608 118 
Freemind 1.0.0 2011 68 668 555 
Frinika 0.2.0 2009 50 248 126 

 

Fig. 1: Usage of datasets 

3. RESEARCH METHODOLOGY 

In this section, we briefly explain the methodology used. The 
first step is to conduct univariate analysis to find a subset of 
metrics which are significant predictors of change proneness. 
The next step is to calculate the threshold values for the 
significant metrics. The Bender method [9] based on the 
logistic regression (LR) method is used to calculate the 
thresholds at different levels of change (Po). We considered 
the threshold values at the lowest possible Po. Using these 
threshold values of the metric, we convert the metrics into 
binary. For validating the threshold values, we constructed 
various machine learning models. The results measured in 
terms of AUC and g-mean are compared with the results when 
machine learning models are applied on the non-binary 
original values (i.e. without thresholds).  

3.1 Analysis of Univariate Logistic Regression 

Logistic regression (LR) is the statistical method used to 
predict the dependent variable from a set of independent 
variables ([23], [24]). We have used univariate logistic 
regression to find a subset of significant metrics and to 
calculate the threshold values of those metrics. The univariate 
logistic regression formula is [24]: 

P= eg(x)/(1+eg(x)

The values of α and β are used to calculate threshold values. 
Table 2 shows the univariate results for Freemind 0.9.0. We 
calculate threshold values for the metrics of Freemind 0.9.0, 
thus univariate analysis is done only for Freemind 0.9.0. For 
each metric, the values of coefficient (β), constant (α), and 
statistical significance (sig.) are given. The ‘sig.’ parameter is 
used to indicate the association between each metric and 
change proneness. The ‘β’ parameter, known as coefficient 
shows the impact of the independent variable and its sign 
shows whether the impact is positive or negative. If the ‘sig.’ 
value is below or at the significance threshold of 0.05, then the 

) 

Where, P = probability of a class being change prone 

x= independent variable 

g(x) = α + βx; α = constant and β = slope or estimated 
coefficient 
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metric is said to be significant to change proneness, else the 
metric is said to be insignificant. Only for significant metrics 
(shown in bold), we calculate the threshold values. 

Table 2: Results of Univariate Analysis 

Metrics Constant (α) Coefficient (β) Sig. 
CBO -3.570 0.033 0.000 
NOC -3.048 -0.095 0.62 
NOM -3.159 0.061 0.002 
NOA -3.305 0.135 0.001 
NIM -3.352 0.026 0.001 
NIV -3.141 0.022 0.213 
NLM -3.457 0.031 0.000 
RFC -3.374 0.002 0.003 
NLDM -3.260 0.316 0.003 
NPRM -3.463 0.214 0.000 
NPROM -3.282 0.214 0.000 
NPM -3.332 0.029 0.001 
LOC -3.475 0.003 0.000 
DIT -3.674 0.225 0.056 
LCOM -3.925 0.018 0.001 
WMC -3.486 0.016 0.000 

3.2 Threshold Analysis 

We have used a statistical technique proposed by Bender [9] 
to calculate the threshold values. Value of an Acceptable 
Change Level (VACL) gives the threshold values for OO 
metrics. The formula for VACL is given as follows: 

VACL = 1
β
 [log[ Po

1−Po
 ] −  α ] 

Where, α = constant 

β = estimated coefficient 

Po= acceptable change level 

In this formula, α and β are obtained using the LR formula 
(explained in section 3.1). Po is defined as the acceptable 
change level, which is taken as a suggested probability 
(example, Po = 0.05 or Po = 0.01) by Bender [9]. For classes 
with metrics values below VACL, the probability of change 
occurrence is lower than Po. This variable (Po) can take 
different values, but according to its definition, it is clear that 
lower the value of Po, better it is. 

For the significant metrics of Freemind 0.9.0, we calculate the 
threshold values. Table 3 shows the threshold values at 
different Po values, i.e. 0.01, 0.05, 0.08 and 0.1. The lowest 
value of Po where the threshold values are positive is 
considered and the threshold values at that Po are considered 
for validating Freemind 0.9.1, 1.0.0 and Frinika 0.2.0. We can 
observe that at Po values (0.05, 0.08 and 0.1); the VACL 
values of the metrics are within the range (i.e. positive values). 
Therefore, we will consider the threshold values at 0.05 for 
further analysis. We can observe from the table that VACL 
varies largely as the value of Po changes. For a small increase 
in the value of Po, VACL increases to a large extent. This 

shows that Po plays a significant role in calculating threshold 
values. 

Table 3: Threshold Values of Freemind 0.9.0 

Metrics 
VACL at 
Po = 0.01 

VACL at 
Po = 0.05 

VACL at 
Po= 0.08 

VACL at 
Po= 0.1 

CBO -31.064 18.956 34.171 41.599 
NOM -23.543 3.517 11.748 15.767 
NOA -9.556 2.671 6.39 8.206 
NIM -47.812 15.675 34.987 44.414 
NLM -36.714 16.534 32.731 40.638 
RFC -610.56 214.781 465.826 588.388 
NLDM -4.225 0.999 2.588 3.363 
NPRM -5.29 2.423 4.769 5.915 
NPROM -6.136 1.577 3.924 5.069 
NPM -43.556 13.364 30.678 39.13 
LOC -373.373 176.854 344.218 425.925 
LCOM -37.229 54.476 82.37 95.988 
WMC -69.32 33.848 65.228 80.548 

4. RESULT ANALYSIS 

In this section, we present the results of inter-release and inter-
project validation. In other words, we have converted the 
metrics of Freemind 0.9.0, 0.9.1 and 1.0.0 to binary using the 
threshold values of Freemind 0.9.0. Similarly, the metrics of 
Frinika 0.2.0 are also converted to binary using threshold 
values of Freemind 0.9.0. After the metrics are converted to 
binary, correlation based feature selection (CFS) is applied to 
obtain the best subset of independent variables. Table 4 lists 
the metrics obtained after applying the CFS technique. These 
selected metrics are used to build a classification model using 
different machine learning techniques. We have used 
following two evaluation parameters to evaluate the results: 

Area under Receiver Operating Characteristics Curve (ROC): 
ROC is a plot between sensitivity on the y-axis and (1-
specificity) on the x-axis [25]. The area under the ROC curve 
(AUC) is a measure of accuracy of the predicted model. 
Higher the value of the AUC, higher is the accuracy of the 
model predicted. 

G-mean (GM): It is defined as the square root of the product 
of (a+) and (a-) where (a+) and (a-) are known as the accuracy 
of positives and negatives respectively. The accuracy of 
positives (a+) is defined as the ratio of number of classes that 
are actually ‘change prone’ to the number of classes that are 
predicted to be ‘change prone’. The accuracy of negatives (a-) 
is defined as the ratio of number of classes that are actually 
‘not change prone’ to the number of classes that are predicted 
to be ‘not change prone’. Mathematically, G-mean= square 
root ((a+)*(a-)). 

Table 4: Metrics selected using CFS 
Software Metrics selected 

Freemind 0.9.0  CBO, NLM, NPROM, WMC 
Freemind 0.9.1 CBO, NPM 
Freemind 1.0.0 NLDM, NPROM, NPM, LCOM, WMC 
Frinika 0.2.0 CBO, NLDM, LOC, LCOM 
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4.1 Inter-Release Validation 

Table 5 shows the results of validating different releases of 
Freemind. The results of validating same software from which 
thresholds are obtained (Freemind 0.9.0) show MLP to be the 
best classifier with the highest AUC and G-mean. Other 
classifiers have shown comparable performance. However, 
when performing inter-release validation, i.e. validating 
Freemind 0.9.1 and 1.0.0, the results show the best 
performance by CRT. For both the releases, AUC is above or 
equal to 0.7 and g-mean is also above 70%. Besides this, the 
results of inter-release validation are comparable to the results 
of validating Freemind 0.9.0. Thus, this shows the strength of 
our proposed methodology. In other words, thresholds derived 
for the metrics of previous release can be used to predict 
change prone classes in the future or upcoming release. MLP 
has shown the second best performance and other classifiers 
have shown comparable performance.  

Table 5: Results of Inter-Release Validation  

 
Freemid 0.9.0 Freemind 0.9.1 Freemind 1.0.0 

Method AUC GM AUC GM AUC GM 
AB 0.68 75.9 0.661 62.3 0.643 61.0 
Bagging 0.58 51.7 0.675 63.4 0.575 54.0 
LB 0.67 75.8 0.659 62.4 0.658 65.8 
MLP 0.716 76.0 0.682 65.2 0.685 65.2 
NB 0.686 75.4 0.665 64.0 0.662 65.8 
RF 0.632 73.4 0.678 63.3 0.67 64.5 
CRT 0.68 74.4 0.70 70.8 0.718 72.4 

4.2 Inter-Project Validation 

For evaluating the prediction accuracy of the model, inter-
project validation is carried out on Frinika dataset. Table 6 
presents the results for inter-project validation. We observe 
that the results of validating Frinika are almost similar for all 
the classifiers. Bagging, LB, MLP, NB and RF have shown 
exactly the same results for GM (64.8). Overall, we can say 
that we obtained competitive and consistent results for Frinika. 
We notice that no machine learning classifier actually 
outperformed, but all gave good and competitive results. This 
shows that the threshold values can be effectively utilized and 
applied on different datasets of similar nature.  

Table 6: Results of Inter Project Validation  

Dataset Frinika 0.2.0 
Method AUC GM % 

AB 0.637 63.7 
Bagging 0.611 64.8 
LB 0.621 64.8 
MLP 0.628 64.8 
NB 0.638 64.8 
RF 0.607 64.8 
CRT 0.612 64.8 

 

5. CONCLUSION 

The prediction of change prone classes in early phases of 
software development life cycle is gaining wide importance as 
it helps in improving the quality of software. It helps in 
efficient allocation of resources and thus, reduces the costs 
associated with the maintenance phase. Various object 
oriented (OO) metrics can be used for this purpose. In this 
paper, we have calculated the threshold values of various OO 
metrics which can be used to identify classes where focussed 
attention is required. Threshold values can be defined as 
certain alarming values above which a class is considered to 
be risky, In other words, the classes whose OO metrics exceed 
the threshold values (alarming values), can be selected for 
focussed attention and rigorous testing to improve the quality. 
We have sued a statistical based approach which uses logistic 
regression to calculate the threshold values. Threshold values 
are obtained for open source software Freemind 0.9.0 and 
validated on the same as well as different releases, Freemind 
0.9.1 and 1.0.0. In addition to this, we also carried out inter-
project validation where we take a different project, Frinika to 
validate the threshold values. All the models are validated 
using 10-cross validation and various machine learning 
classifiers are used such as adaboost, bagging, logitboost, 
multilayer perceptron, naïve bayes, random forest and 
classification & regression trees.  

Following important conclusions can be made from this work: 

1. Using univariate logistic regression on Freemind 0.9.0, 
we found that there is a significant relationship between 
the metrics and the dependent variable (change 
proneness). Majority of the metrics are found to be 
significant in predicting change proneness.  

2. There are effective threshold values for the object 
oriented metrics and there is significant effect of Po 
values on the threshold values. Threshold values change 
as we change the value of change level (Po). 

3. We calculated the threshold values at different values of 
Po (0.01, 0.05, 0.08 and 0.1). For Freemind 0.9.0, we 
found Po= 0.05 to be the most appropriate. 

4. For validating the dataset on which thresholds are 
obtained (Freemind 0.9.0) along with different releases of 
the dataset (Freemind 0.9.1 and 1.0.0), we built various 
machine learning models. We found the performance of 
the models obtained for different releases (Freemind 0.9.1 
and 1.0.0) is comparable to the performance of the models 
obtained on the release from which thresholds are 
obtained (Freemind 0.9.0). This shows our threshold 
methodology can be effectively utilized on upcoming or 
future releases of software. We also performed inter-
project validation using Frinika dataset. 
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We plan to replicate our study on larger datasets so that the 
results can be made more generalized. Besides this, we also 
plan to predict models based on machine learning algorithms 
such as genetic algorithms. We would also like to do cost 
benefit analysis of the models predicted in our future studies. 
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