
Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 11; April-June, 2015 pp. 30-35
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/acsit.html

Prediction of Change Prone Classes using
Threshold Methodology

Ruchika Malhotra1 and Ankita Bansal2
1,2

E-mail:
Dept. of Software Engineering Delhi Technological University, Delhi, India

1 , ruchikamalhotra2004@yahoo.com 2

Abstract—The widespread use of software metrics to predict various
quality attributes is evident. In this study we have used metrics to
identify change prone parts of software so that developers can pay
focused attention on such classes. Various metric models are
constructed using machine learning and statistical techniques, which
can be used for predicting change prone parts of the software.
However, training these models is a time consuming task and hence,
these models cannot be used on a daily basis to predict change
proneness. In this paper, an alternative approach is used which is
based on calculating thresholds of metrics. Thresholds are defined as
alarming values above which a class is considered to be risky or
change prone and hence, needs careful attention. A statistical
approach is used to calculate threshold values of open source
software, Freemind 0.9.0. To examine the applicability of threshold
values, they are validated on the different releases of Freemind as
well as on a similar nature project, Frinika. The results demonstrate
the effectiveness of the methodology in identification of the threshold
values.

Keywords: Software quality, threshold, metrics, logistic regression,
empirical validation

ankita.bansal06@gmail.com

1. INTRODUCTION

Object oriented (OO) metrics are widely used in literature to
predict various software quality attributes. In this study, we
use OO metrics to predict the parts of software that are more
change prone than others. Identification of change prone parts
in early phases of software development life cycle helps
managers is efficiently allocating the resources (time, money
and manpower). It also helps designers to get an insight on the
design of software and thus, can alter the design if it is
required. Construction of the metric models using various
machine learning and statistical techniques to identify change
prone parts is well known in literature ([1]-[7]). However,
construction of these metric models is not always feasible.
Training these models using machine learning techniques is a
time consuming task and thus, it is impractical to use them on
a daily basis. An alternative is to identify certain alarming
values of the metrics above which a class is considered to be
risky. In other words, we can define some thresholds for the
metrics. The class having metric value more than the threshold
value needs careful and focused attention. According to
Chidamber et al. [8] one of the important uses of OO metrics

is to identify extreme values (threshold values) of these
metrics. The classes above these extreme values will have
higher complexity and require management attention. In this
study, we have obtained threshold values for various OO
metrics using a statistical approach proposed by Bender [9].
This methodology of threshold computation is much simpler
as it is just based on the values of constant and coefficient of
each metric obtained from univariate logistic regression. It
requires much less time and effort than the traditional metric
models.

In initial years, many authors have derived threshold values
based on their experience and thus, those values are not
universally accepted. For example, McCabe [10] defined a
value of 10 as threshold for the complexity metric; the
threshold values of maintainability index metric are defined as
65 and 85 [11] etc. Besides the thresholds based on intuition,
some researchers defined thresholds using mean (µ) and
standard deviation (σ) measures. For example, Erni et al. [12]
calculated the threshold values using µ and σ of the metric
values. The paper defined two terms Tmin = m - s and Tmax =
m + s, the lower and the higher thresholds. However, this
method did not become popular as it was based on the
assumption that the metrics are normally distributed which is
not always possible. French [13] used Chebyshev’s inequality
theorem (not restricted to normal distribution) in addition to
mean (µ) and standard deviation (σ) to derive threshold
values. According to French, a threshold can be defined as T=
µ + k * σ (k=number of standard deviations). However, this
methodology was also not used much as it was restricted to
only two-tailed symmetric distributions, which are not
justified. There are few studies in literature, which have
obtained the threshold values of metrics to predict fault
proneness ([14]-[20]). Benlarbi et al. [21] and El Emam et al.
[19] used a statistical model (based on logistic regression)
suggested by Ulm [22] to calculate the threshold values of
number of metrics and found that there was no statistical
difference between the model predicted with threshold values
and model predicted without threshold values. Bender [9]
working in the epidemiological field proposed another
statistical model that was used by Shatnawi [20] to find the
risk level for any arbitrary threshold value for Chidamber and

mailto:1ruchikamalhotra2004@yahoo.com�

Prediction of Change Prone Classes using Threshold Methodology 31

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 11; April-June, 2015

Kemerer (CK) metrics. Their results concluded that the CK
metrics have threshold effects at various risk levels.

Thus, the literature shows that although there are few studies
that use threshold methodology for predicting fault proneness,
but no study till date known to the authors has obtained
thresholds for OO metrics on change proneness. More studies
need be conducted to identify potential usage of threshold
values for predicting change proneness. Additionally, research
is required to understand if these values can be generalised
across various software applications.

Hence, the main aim of this paper is to calculate the threshold
values of metrics and compare its results of validation with the
results of the validation when metric models are used. We
focus on the following four key points:

1. Applying threshold methodology to compute thresholds:
We have used a statistical approach proposed by Bender
et al. [9] to calculate the threshold values of the metrics of
an open source software, Freemind (a mind mapper and
hierarchical editor).

2. Validating the threshold methodology to assess its
accuracy: Once the threshold values are computed, we
constructed various machine learning models (adaboost
(AB), bagging, logitboost (LB), multilayer perceptron
(MLP), naïve bayes (NB), random forest (RF) and
classification & regression trees (CRT)) to validate the
values. We have also constructed the same models
without using the thresholds of the metrics and compared
the results.

3. Conducting inter-release validation: We computed the
threshold values for Freemind 0.9.0 and validated them on
different releases of Freemind, 0.9.1 and 0.10.0. This will
allow us to assess the applicability of the threshold values
on various versions of the same software.

4. Conducting inter-project validation: In addition to
validating the different release of same software, we also
validated the threshold values on similar nature software,
Frinika 0.2.0. This will allow us to externally validate the
applicability of the identified threshold values. This will
help in obtaining generalized and well-formed results.

We have used area under the receiver operating characteristic
curve (AUC) and g-mean to analyse the results as these are
suitable for unbalanced data. The results indicate that there
exist thresholds for OO metrics and these thresholds can be
applied by software engineers on similar nature software
systems to find the change prone design and code areas that
may require corrective action.

The paper is organized as follows: Next section, explains the
basic background behind the work, emphasizing on the
variables used and empirical data collection. Following this, in
section 3, we present the research methodology that focuses
on the basic approach or steps followed to carry out the work.
It explains the univariate and the threshold results. Section 4
explains in detail the validation results of the study along with

the results of external validation. Finally, the work is
concluded in section 5.

2. RESEARCH BACKGROUND

In this section, we summarize the independent and dependent
variables used in our study. We also explain the datasets used
along with their descriptive statistics. The statistical method
used and the formula for calculating threshold values have
also been explained.

2.1 Dependent and Independent Variables

The dependent variable used in our study is change proneness.
Change proneness can be defined as the probability of
occurrence of change in a class. Change is calculated in terms
of the number of lines of code added, deleted and modified in
the recent version with respect to the previous version. The
independent variables are a set of object oriented metrics listed
below:

a. Coupling between object classes (CBO): Number of
classes whose attributes is used by the given class plus
those that use the attributes or methods of the given class

b. Number of Children (NOC): Number of direct children of
a class in a hierarchy

c. Number of Attributes (NOA): Number of
attributes/variables defined in a class

d. Number of Instance Variable (NIV): It measures relations
of a class with other objects of the program

e. Depth of Inheritance Tree (DIT): Maximum number of
steps from the class node to the root of the tree

f. Number of Methods per Class (NOM): Number of
methods defined in the class

g. Number of Instance Method (NIM): Number of Instance
Methods

h. Number of Local Methods (NLM): Number of local (not
inherited) methods

i. Response For a Class (RFC): Number of methods in the
class including the methods that are called by class’s
methods

j. Number of Local Default Visibility Methods (NLDM):
Number of local default visibility methods

k. Number of Private Methods (NPRM): Number of local
(not inherited) private methods

l. Number of Protected Methods (NPROM): Number of
local protected methods

m. Number of Public Methods (NPM): Number of local (not
inherited) public methods

n. Lack of Cohesion amongst methods (LCOM): For each
data field in a class, the percentage of the methods in the
class using that data field; the percentages are averaged
and then subtracted from 100%

Ruchika Malhotra and Ankita Bansal

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 11; April-June, 2015

32

o. Weighted Methods Per Class (WMC): Count of sum of
complexities of all methods in a class

p. Lines of Code (LOC): Number of lines that contain
source code

2.2 Empirical Data Collection

The empirical validation is carried on an open source dataset,
Freemind written in Java programming language. We analysed
3 releases of Freemind, 0.9.0, 0.9.1, 0.10.0. For external
validation, another open source dataset is considered, Frinika
written in Java programming language. The source code of
these open source software is available at
http://sourceforge.net. Freemind is a mind mapper and
hierarchical editor. It serves various purposes to its users,
including keeping track of projects, acts as workplace
for Internet research, used for essay
writing and brainstorming, etc. Frinika is a complete music
workstation, which provides the end user with a complete
platform for creating music with their computers. The details
of software are provided in table 1. Change is collected for the
common classes between 2 successive releases of each
software. For example, change is collected in terms of number
of lines added, deleted and modified in Freemind 0.9.0 with
respect to Freemind 0.9.1. The common classes between
Freemind 0.9.0 and 0.9.1 were found to be 656. Thus, we say
that there are 656 datapoints for Freemind 0.9.0 where each
datapoint corresponds to one Java class common in both the
versions 0.9.0 and 0.9.1. For each data point, we collected: a)
set of OO metrics for that class in first version, i.e. 0.9.0 in
this case and b) the number of SLOC changes in that class
from version 0.9.0 to 0.9.1. We carried out three analyses
using the datasets as explained below (see Fig. 1):

1. We computed the threshold values of object oriented
metrics on Freemind 0.9.0.

2. We validated the threshold values of the object oriented
metrics on successive versions of Freemind (0.9.1, 1.0.0).

3. We validated the threshold values of the object oriented
metrics obtained from Freemind 0.9.0 on Frinika 0.2.0.
The external validation of Freemind is done on Frinika as
they possess some common characteristics such as both
are open source, free, written in java and licensed under
GNU GPL. The purpose of this analysis was to compute
the threshold values for the metrics and assess the
applicability of the obtained threshold values on different
datasets (including versions of the same software and
different software).

Table 1: Details of Software

Software/version Release
year

KLOC Total
classes

Classes
changed

Freemind 0.9.0 2008 48 656 29
Freemind 0.9.1 2009 50 608 118
Freemind 1.0.0 2011 68 668 555
Frinika 0.2.0 2009 50 248 126

Fig. 1: Usage of datasets

3. RESEARCH METHODOLOGY

In this section, we briefly explain the methodology used. The
first step is to conduct univariate analysis to find a subset of
metrics which are significant predictors of change proneness.
The next step is to calculate the threshold values for the
significant metrics. The Bender method [9] based on the
logistic regression (LR) method is used to calculate the
thresholds at different levels of change (Po). We considered
the threshold values at the lowest possible Po. Using these
threshold values of the metric, we convert the metrics into
binary. For validating the threshold values, we constructed
various machine learning models. The results measured in
terms of AUC and g-mean are compared with the results when
machine learning models are applied on the non-binary
original values (i.e. without thresholds).

3.1 Analysis of Univariate Logistic Regression

Logistic regression (LR) is the statistical method used to
predict the dependent variable from a set of independent
variables ([23], [24]). We have used univariate logistic
regression to find a subset of significant metrics and to
calculate the threshold values of those metrics. The univariate
logistic regression formula is [24]:

P= eg(x)/(1+eg(x)

The values of α and β are used to calculate threshold values.
Table 2 shows the univariate results for Freemind 0.9.0. We
calculate threshold values for the metrics of Freemind 0.9.0,
thus univariate analysis is done only for Freemind 0.9.0. For
each metric, the values of coefficient (β), constant (α), and
statistical significance (sig.) are given. The ‘sig.’ parameter is
used to indicate the association between each metric and
change proneness. The ‘β’ parameter, known as coefficient
shows the impact of the independent variable and its sign
shows whether the impact is positive or negative. If the ‘sig.’
value is below or at the significance threshold of 0.05, then the

)

Where, P = probability of a class being change prone

x= independent variable

g(x) = α + βx; α = constant and β = slope or estimated
coefficient

http://sourceforge.net/�
http://www.gnu.org/licenses/gpl.html�

Prediction of Change Prone Classes using Threshold Methodology 33

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 11; April-June, 2015

metric is said to be significant to change proneness, else the
metric is said to be insignificant. Only for significant metrics
(shown in bold), we calculate the threshold values.

Table 2: Results of Univariate Analysis

Metrics Constant (α) Coefficient (β) Sig.
CBO -3.570 0.033 0.000
NOC -3.048 -0.095 0.62
NOM -3.159 0.061 0.002
NOA -3.305 0.135 0.001
NIM -3.352 0.026 0.001
NIV -3.141 0.022 0.213
NLM -3.457 0.031 0.000
RFC -3.374 0.002 0.003
NLDM -3.260 0.316 0.003
NPRM -3.463 0.214 0.000
NPROM -3.282 0.214 0.000
NPM -3.332 0.029 0.001
LOC -3.475 0.003 0.000
DIT -3.674 0.225 0.056
LCOM -3.925 0.018 0.001
WMC -3.486 0.016 0.000

3.2 Threshold Analysis

We have used a statistical technique proposed by Bender [9]
to calculate the threshold values. Value of an Acceptable
Change Level (VACL) gives the threshold values for OO
metrics. The formula for VACL is given as follows:

VACL = 1
β
 [log[Po

1−Po
] − α]

Where, α = constant

β = estimated coefficient

Po= acceptable change level

In this formula, α and β are obtained using the LR formula
(explained in section 3.1). Po is defined as the acceptable
change level, which is taken as a suggested probability
(example, Po = 0.05 or Po = 0.01) by Bender [9]. For classes
with metrics values below VACL, the probability of change
occurrence is lower than Po. This variable (Po) can take
different values, but according to its definition, it is clear that
lower the value of Po, better it is.

For the significant metrics of Freemind 0.9.0, we calculate the
threshold values. Table 3 shows the threshold values at
different Po values, i.e. 0.01, 0.05, 0.08 and 0.1. The lowest
value of Po where the threshold values are positive is
considered and the threshold values at that Po are considered
for validating Freemind 0.9.1, 1.0.0 and Frinika 0.2.0. We can
observe that at Po values (0.05, 0.08 and 0.1); the VACL
values of the metrics are within the range (i.e. positive values).
Therefore, we will consider the threshold values at 0.05 for
further analysis. We can observe from the table that VACL
varies largely as the value of Po changes. For a small increase
in the value of Po, VACL increases to a large extent. This

shows that Po plays a significant role in calculating threshold
values.

Table 3: Threshold Values of Freemind 0.9.0

Metrics
VACL at
Po = 0.01

VACL at
Po = 0.05

VACL at
Po= 0.08

VACL at
Po= 0.1

CBO -31.064 18.956 34.171 41.599
NOM -23.543 3.517 11.748 15.767
NOA -9.556 2.671 6.39 8.206
NIM -47.812 15.675 34.987 44.414
NLM -36.714 16.534 32.731 40.638
RFC -610.56 214.781 465.826 588.388
NLDM -4.225 0.999 2.588 3.363
NPRM -5.29 2.423 4.769 5.915
NPROM -6.136 1.577 3.924 5.069
NPM -43.556 13.364 30.678 39.13
LOC -373.373 176.854 344.218 425.925
LCOM -37.229 54.476 82.37 95.988
WMC -69.32 33.848 65.228 80.548

4. RESULT ANALYSIS

In this section, we present the results of inter-release and inter-
project validation. In other words, we have converted the
metrics of Freemind 0.9.0, 0.9.1 and 1.0.0 to binary using the
threshold values of Freemind 0.9.0. Similarly, the metrics of
Frinika 0.2.0 are also converted to binary using threshold
values of Freemind 0.9.0. After the metrics are converted to
binary, correlation based feature selection (CFS) is applied to
obtain the best subset of independent variables. Table 4 lists
the metrics obtained after applying the CFS technique. These
selected metrics are used to build a classification model using
different machine learning techniques. We have used
following two evaluation parameters to evaluate the results:

Area under Receiver Operating Characteristics Curve (ROC):
ROC is a plot between sensitivity on the y-axis and (1-
specificity) on the x-axis [25]. The area under the ROC curve
(AUC) is a measure of accuracy of the predicted model.
Higher the value of the AUC, higher is the accuracy of the
model predicted.

G-mean (GM): It is defined as the square root of the product
of (a+) and (a-) where (a+) and (a-) are known as the accuracy
of positives and negatives respectively. The accuracy of
positives (a+) is defined as the ratio of number of classes that
are actually ‘change prone’ to the number of classes that are
predicted to be ‘change prone’. The accuracy of negatives (a-)
is defined as the ratio of number of classes that are actually
‘not change prone’ to the number of classes that are predicted
to be ‘not change prone’. Mathematically, G-mean= square
root ((a+)*(a-)).

Table 4: Metrics selected using CFS
Software Metrics selected

Freemind 0.9.0 CBO, NLM, NPROM, WMC
Freemind 0.9.1 CBO, NPM
Freemind 1.0.0 NLDM, NPROM, NPM, LCOM, WMC
Frinika 0.2.0 CBO, NLDM, LOC, LCOM

Ruchika Malhotra and Ankita Bansal

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 11; April-June, 2015

34

4.1 Inter-Release Validation

Table 5 shows the results of validating different releases of
Freemind. The results of validating same software from which
thresholds are obtained (Freemind 0.9.0) show MLP to be the
best classifier with the highest AUC and G-mean. Other
classifiers have shown comparable performance. However,
when performing inter-release validation, i.e. validating
Freemind 0.9.1 and 1.0.0, the results show the best
performance by CRT. For both the releases, AUC is above or
equal to 0.7 and g-mean is also above 70%. Besides this, the
results of inter-release validation are comparable to the results
of validating Freemind 0.9.0. Thus, this shows the strength of
our proposed methodology. In other words, thresholds derived
for the metrics of previous release can be used to predict
change prone classes in the future or upcoming release. MLP
has shown the second best performance and other classifiers
have shown comparable performance.

Table 5: Results of Inter-Release Validation

Freemid 0.9.0 Freemind 0.9.1 Freemind 1.0.0

Method AUC GM AUC GM AUC GM
AB 0.68 75.9 0.661 62.3 0.643 61.0
Bagging 0.58 51.7 0.675 63.4 0.575 54.0
LB 0.67 75.8 0.659 62.4 0.658 65.8
MLP 0.716 76.0 0.682 65.2 0.685 65.2
NB 0.686 75.4 0.665 64.0 0.662 65.8
RF 0.632 73.4 0.678 63.3 0.67 64.5
CRT 0.68 74.4 0.70 70.8 0.718 72.4

4.2 Inter-Project Validation

For evaluating the prediction accuracy of the model, inter-
project validation is carried out on Frinika dataset. Table 6
presents the results for inter-project validation. We observe
that the results of validating Frinika are almost similar for all
the classifiers. Bagging, LB, MLP, NB and RF have shown
exactly the same results for GM (64.8). Overall, we can say
that we obtained competitive and consistent results for Frinika.
We notice that no machine learning classifier actually
outperformed, but all gave good and competitive results. This
shows that the threshold values can be effectively utilized and
applied on different datasets of similar nature.

Table 6: Results of Inter Project Validation

Dataset Frinika 0.2.0
Method AUC GM %

AB 0.637 63.7
Bagging 0.611 64.8
LB 0.621 64.8
MLP 0.628 64.8
NB 0.638 64.8
RF 0.607 64.8
CRT 0.612 64.8

5. CONCLUSION

The prediction of change prone classes in early phases of
software development life cycle is gaining wide importance as
it helps in improving the quality of software. It helps in
efficient allocation of resources and thus, reduces the costs
associated with the maintenance phase. Various object
oriented (OO) metrics can be used for this purpose. In this
paper, we have calculated the threshold values of various OO
metrics which can be used to identify classes where focussed
attention is required. Threshold values can be defined as
certain alarming values above which a class is considered to
be risky, In other words, the classes whose OO metrics exceed
the threshold values (alarming values), can be selected for
focussed attention and rigorous testing to improve the quality.
We have sued a statistical based approach which uses logistic
regression to calculate the threshold values. Threshold values
are obtained for open source software Freemind 0.9.0 and
validated on the same as well as different releases, Freemind
0.9.1 and 1.0.0. In addition to this, we also carried out inter-
project validation where we take a different project, Frinika to
validate the threshold values. All the models are validated
using 10-cross validation and various machine learning
classifiers are used such as adaboost, bagging, logitboost,
multilayer perceptron, naïve bayes, random forest and
classification & regression trees.

Following important conclusions can be made from this work:

1. Using univariate logistic regression on Freemind 0.9.0,
we found that there is a significant relationship between
the metrics and the dependent variable (change
proneness). Majority of the metrics are found to be
significant in predicting change proneness.

2. There are effective threshold values for the object
oriented metrics and there is significant effect of Po
values on the threshold values. Threshold values change
as we change the value of change level (Po).

3. We calculated the threshold values at different values of
Po (0.01, 0.05, 0.08 and 0.1). For Freemind 0.9.0, we
found Po= 0.05 to be the most appropriate.

4. For validating the dataset on which thresholds are
obtained (Freemind 0.9.0) along with different releases of
the dataset (Freemind 0.9.1 and 1.0.0), we built various
machine learning models. We found the performance of
the models obtained for different releases (Freemind 0.9.1
and 1.0.0) is comparable to the performance of the models
obtained on the release from which thresholds are
obtained (Freemind 0.9.0). This shows our threshold
methodology can be effectively utilized on upcoming or
future releases of software. We also performed inter-
project validation using Frinika dataset.

Prediction of Change Prone Classes using Threshold Methodology 35

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 11; April-June, 2015

We plan to replicate our study on larger datasets so that the
results can be made more generalized. Besides this, we also
plan to predict models based on machine learning algorithms
such as genetic algorithms. We would also like to do cost
benefit analysis of the models predicted in our future studies.

REFERENCES

[1] Koru, A.G., and Tian, J., “Comparing High-Change Modules
and Modules with the Highest Measurement Values in Two
Large-Scale Open-Source Products,” IEEE Transactions on
Software Engineering, 31, 8, 2005, pp. 625–642.

[2] Koru, A.G. and Liu,H., “Identifying and characterizing change-
prone classes in two large-scale open-source products,” The
Journal of Systems and Software, 80,1, 2007, pp. 63-73.

[3] Han, A.R., Jeon,S.U., Bae, D.H., and Hong,J.E., “Behavioural
Dependency Measurement for Change-proneness Prediction in
UML 2.0 Design Models,” Annual IEEE International
Computer Software and Applications Conference, 2008.

[4] Zhou,Y., Leung, H., and Xu,B., “Examining the Potentially
Confounding Effect of Class Size on the Associations between
Object-Oriented Metrics and Change-Proneness,” IEEE
Transactions on Software Engineering, 35, 5, 2009, pp. 607-623.

[5] Han, A.R., Jeon,S.U., Bae, D.H., and Hong,J.E., “Measuring
behavioral dependency for improving change-proneness
prediction in UML-based design models,” The Journal of
Systems and Software, vol. 83, 2010, pp. 222–234.

[6] Lu,H., Zhou,Y., Xu,B., Leung, H., and Chen,L., “The ability of
object-oriented metrics to predict change-proneness: a meta-
analysis,” Empir Software Eng., 17, 3, 2011, pp. 200-242.

[7] Malhotra, R. and Khanna,M., “Investigation of relationship
between object-oriented metrics and change proneness”, Int. J.
Mach. Learn. & Cyber,” 4, 4, 2013, pp. 273-286.

[8] Chidamber,S., Darcy, D., and Kemerer,C., “Managerial use of
metrics for object-oriented software: an exploratory analysis,”
IEEE Trans Softw Eng., 24, 8,1998, pp. 629–639.

[9] Bender,R., “Quantitative Risk Assessment in Epidemiological
Studies Investigating Threshold Effects,” Biometrical Journal,
41, 3, 1999, pp. 305-319.

[10] McCabe,T.J., “A complexity measure,” Software Engineering,
IEEE Transactions, SE-2, 4, 1976, pp. 308-320.

[11] Coleman,D., Lowther,B., and Oman,P., “The application of
software maintainability models in industrial software systems,”
J. Syst. Softw., 29, 1, 1999, pp. 3-16.

[12] Erni, K., and Lewerentz,C., “Applying Design-Metrics to
Object-Oriented Frameworks,” Proc. Third Int’l Software
Metrics Symp., Washington DC, USA, 1996, pp. 64-74.

[13] French,V.A., “Establishing software metric thresholds,
“International Workshop on Software Measurement, 1999.

[14] Daly,J., Brooks,A., Miller,J., Roper, M., and Wood,M.,
“Evaluating Inheritance Depth on the Maintainability of Object-
Oriented Software,” Empirical Software Eng., 1, 2, 1996, pp.
109-132.

[15] Cartwright,M., “An Empirical View of Inheritance,” Information
and Software Technology, 40,14, 1998, pp. 795-799.

[16] Harrison,R., Counsell, S., and Nithi, R., “Experimental
Assessment of the Effect of Inheritance on the Maintainability
of Object-Oriented Systems,” J. Systems and Software, 52, (2/3),
2000, pp. 173-179.

[17] Prechelt,L., Unger,B., Philippsen, M., and Tichy,W., “A
Controlled Experiment on Inheritance Depth as a Cost Factor for
Code Maintenance,” J. Systems and Software, 65,2, 2003,
pp.115-126.

[18] El Emam,K. Benlarbi,S., Goel, N., and Rai,S., “Thresholds for
Object-Oriented Measures,” Proc. 11th Int’l Symp. Software
Reliability Eng. 2000, pp. 24-38.

[19] El Emam,K., Benlarbi,S., Goel,N., Melo,W., Lounis H., and Rai,
S., “The Optimal Class Size for Object-Oriented Software,
“IEEE Trans. Software Eng., 28, 5, 2002, pp. 494-509.

[20] Shatnawi,R., “A Quantitative Investigation of the Acceptable
Risk Levels of Object-Oriented Metrics in Open-Source
Systems,” IEEE transactions on Software Engineering, 36, 2,
2010, pp. 216 – 225.

[21] Benlarbi,S., El Emam,K., Goel,N., and Rai,S., “Thresholds for
object-oriented measures,” in Proc. Of the 11th

[22] Ulm,K., “A Statistical Method for Assessing a Threshold in
Epidemiological Studies,” Statistics in Medicine, 10, 3, 1991,
pp. 341-349.

 International
Symposium on Software Reliability Engineering, 2000, pp.24.

[23] Singh,Y., Kaur, A. and Malhotra,R., “Empirical validation of
object-oriented metrics for predicting fault proneness,” Softw
Qual J., 18, 1, 2010, pp. 3–35.

[24] Hosmer D. and Lemeshow, S. (1989). Applied logistic
regression (Wiley).

[25] El Emam,K., Benlarbi,S., Goel, N., and Rai,S., “A validation of
object-oriented metrics,” NRC Tech. rep. ERB-1063, 1999.

	Introduction
	Research Background
	Research Methodology
	Result Analysis
	Conclusion
	References

